FERRANTI T.R. CELL

Type QF40 is an integral cavity, high 'Q'. T-R Cell for operation in the 3 cm. band. It is designed for coupling to $\frac{1}{2}$ in. I.D. circular waveguide.

PHYSICAL DIMENSIONS.

Max. overall height ... 31½ ins. (100 mm.)
Max. overall width ... 2.065 ins. (52.4 mm.)
For other dimensions see drawings in margin and overleaf.
The Keep-alive electrode is connected to a 5 BA terminal at the top of the cell.

RATINGS.

Max, Transmitter Power level 50 kW. Peak. Tuning Range Voltage Standing Wave Ratio 9,500 Mc/s. \pm 5% 2.0 Ī ·5 db. Max. Insertion loss *Max. Leakage at 40 kW. Peak-0.04 ergs/pulse. spike flat 15 mW. †Min. Breakdown Power > 100 mW. (a) 0.72in. ± 0.03 in. (b) 0.67in. ± 0.03 in. Effective R.F. short circuit Max. Recovery time (to 6 db. loss) 4 usecs. Max. Keep-alive Breakdown 1000 volts. voltage

TYPICAL PERFORMANCE DATA.

Keep Alive Characteristics.

Breakdown Voltage 700 volts. Potential Drop 350 volts.

- * Lusec, pulses.
- † For protection from external transmitters.
- † The position of the R.F. short has two alternative values depending on whether a window discharge occurs or not, but in either case the crystal protection is not affected.
 - (a) At peak powers below approximately 15 kW, or with 0·1 µsec, pulse lengths at all power levels, discharge is confined to the cones, and the effective short is at 0·72in. ±0·03in.
 - (b) At peak powers above approximately 15 kW, with pulse lengths greater than 0·1 usec, a window discharge occurs as well and the effective short is at 0·67in. + 0·03in.

These distances are measured from the input edge of the cell, i.e., from either of the positions indicated by the broken lines A or A¹ on the drawing.

Formerly known as Type TTR31.

All dimensions shewn are in inches.

Issue 3. Jan., 1955.

OPERATING NOTES.

This T.R. Cell in a simple duplexer, gives complete protection to all types of crystals both from the local and neighbouring transmitters, with an appreciable margin of safety and long life.

To ensure rapid breakdown a negative voltage of 1000V, D.C. should be applied to the keep-alive electrode. The keep-alive current should be restricted to between 100 μA and 150 μA by means of a suitable limiting resistance. Some of this resistance may be located in the power supply but at least 1 megohm should be connected directly on to the keep-alive terminal to prevent relaxation oscillations at the keep-alive. It is advisable to arrange that the keep-alive current is passing for a few seconds before the transmitter begins to operate.

The cell is provided with a tuner free from backlash which gives a sensitive adjustment of frequency over the specified tuning ranges.

To give protection from neighbouring transmitters when the set is not operating and the keep-alive unenergised a suitable gate or crystal shutter must be fitted.